Schema Path Pattern¶
Alation Cloud Service Applies to Alation Cloud Service instances of Alation
Customer Managed Applies to customer-managed instances of Alation
Specifying a schema path pattern for your schema extraction job helps optimize the extraction. In large-scale analytics systems, or data lakes, data representing a single logical schema is stored as a multi-file resource set.
A resource set is a logical group of multiple files which use exactly the same logical schema. Alation uses the schema path pattern to identify resource sets in your storage system containers or buckets.
For example, let’s assume we are storing data as Parquet files. The physical storage of these files looks like this:
"/path/to/sample.parquet/part-1.snappy.parquet",
"/path/to/sample.parquet/part-2.snappy.parquet",
<...>
"/path/to/sample.parquet/part-n.snappy.parquet"
As mentioned above, a resource set would have exactly the same type of files, so if we extract column metadata from each file, it will be the same for all these files. If there are hundreds or thousands of files under one directory, all with the same schema, it would not be efficient to perform column extraction for each file as this is a resource-intensive operation.
Using a schema path pattern in such cases helps discover a schema for the whole resource set, optimizing the amount of data read and streamed by the connector. Use scenarios below to write schema path patterns for your OCF file system sources that support schema extraction.
Use the following table to decide the appropriate schema path pattern for your use case:
Note
If all files belong to a single schema under one directory, you don’t need to specify a schema path pattern. The connector automatically determines the schema.
Use Case |
Recommended Scenario |
|---|---|
Single schema spread across many files |
|
Multiple schemas, each with its own folder and multi-file dataset |
|
Multiple schemas, each with its own folder at the deepest directory level. |
|
Single schema with multi-file dataset and data divided by date |
|
Multiple schemas with multi-file dataset and data divided by date |
|
Multiple schemas, where each unique directory under a specific directory is a logical schema |
|
Multiple schemas with complex path patterns |
|
Multiple schemas with Hive-style partitioning |
|
Example of an unsupported schema path pattern discovery |
Scenario 1¶
Use this when you have a single logical schema with multi-file dataset:
container/warehouse/production-database/sales_data/sales_data_1.parquet
container/warehouse/production-database/sales_data/sales_data_2.parquet
<...>
container/warehouse/production-database/sales_data/sales_data_n.parquet
The text string that needs to be provided as input in the Schema Path Pattern field can be:
sales_data
production-database/sales_data
Detected Logical Schema¶
container/warehouse/production-database/sales_data—Columns for this logical schema will be cataloged on the catalog page for container/warehouse/production-database/sales_data folder by reading the columns for file sales_data1.parquet.
Scenario 2¶
Use this when you have multiple logical schemas with corresponding multi-file datasets. All logical schemas at the same directory depth:
container/warehouse/production-database/sales_data/sales_data_1.parquet
container/warehouse/production-database/sales_data/sales_data_2.parquet
<...>
container/warehouse/production-database/sales_data/sales_data_n.parquet
container/warehouse/production-database/product_data/product_data_1.parquet
container/warehouse/production-database/product_data/product_data_2.parquet
<...>
container/warehouse/production-database/product_data/product_data_n.parquet
Expected behavior for this kind of scenario is to discover sales_data and product_data as two logical schemas.
The text string that needs to be provided as input in the Schema Path Pattern field can be:
production-database/.*
production-database/(.*)_data
production-database/(sales|product)_data
Detected Logical Schemas¶
container/warehouse/production-database/sales_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/sales_datafolder by reading the columns for filesales_data_1.parquet.
container/warehouse/production-database/product_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/product_datafolder by reading the columns for fileproduct_data_1.parquet.
Scenario 3¶
Use this when you have multiple logical schemas with corresponding multi-file datasets. Each unique directory at the deepest level for each multi-file dataset to be discovered as a logical schema.
container/warehouse/production-database/sales_data/sales_data_1.parquet
container/warehouse/production-database/sales_data/sales_data_2.parquet
<...>
container/warehouse/production-database/sales_data/sales_data_n.parquet
container/warehouse/production-database/product_data/product_data_1.parquet
container/warehouse/production-database/product_data/product_data_2.parquet
<...>
container/warehouse/production-database/product_data/product_data_n.parquet
container/warehouse/production-database/customer/customer_data/customer_data_1.parquet
container/warehouse/production-database/customer/customer_data/customer_data_1.parquet
<...>
container/warehouse/production-database/customer/customer_data/customer_data_n.parquet
Expected behavior for this kind of scenario is to discover sales_data, product_data and customer_data as logical schemas.
The text string that needs to be provided as input in the Schema Path Pattern field can be:
production-database/.*
Detected Logical Schemas¶
container/warehouse/production-database/sales_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/sales_datafolder by reading the columns for filesales_data_1.parquet.
container/warehouse/production-database/product_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/product_datafolder by reading the columns for fileproduct_data_1.parquet.
container/warehouse/production-database/customer/customer_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/customer/customer_datafolder by reading the columns for filecustomer_data_1.parquet.
Scenario 4¶
Use this when you have a single logical schema with multi-file dataset, data divided by year/month/day.
container/warehouse/production-database/inventory/2021/01/01/data.parquet
container/warehouse/production-database/inventory/2021/01/02/data.parquet
<...>
container/warehouse/production-database/inventory/2021/01/31/data.parquet
container/warehouse/production-database/inventory/2021/02/01/data.parquet
container/warehouse/production-database/inventory/2021/02/02/data.parquet
<...>
container/warehouse/production-database/inventory/2021/02/28/data.parquet
<...>
container/warehouse/production-database/inventory/2021/12/31/data.parquet
container/warehouse/production-database/inventory/2022/01/01/data.parquet
container/warehouse/production-database/inventory/2022/01/02/data.parquet
<...>
container/warehouse/production-database/inventory/2022/01/31/data.parquet
container/warehouse/production-database/inventory/2022/02/01/data.parquet
container/warehouse/production-database/inventory/2022/02/02/data.parquet
<...>
container/warehouse/production-database/inventory/2022/02/28/data.parquet
<...>
container/warehouse/production-database/inventory/2022/12/31/data.parquet
The text string that needs to be provided as input in the Schema Path Pattern field can be:
production-database/inventory
production-database/[a-z0-9A-Z]*
Detected Logical Schemas¶
container/warehouse/production-database/inventory—Columns for this logical schema will be cataloged on the catalog page for container/warehouse/production-database/inventory folder by reading the columns for file container/warehouse/production-database/inventory/2021/01/01/data.parquet.
Scenario 5¶
Use this when you have multiple logical schemas with multi-file dataset, data divided by year/month/day.
container/warehouse/production-database/inventory/2021/01/01/data.parquet
container/warehouse/production-database/inventory/2021/01/02/data.parquet
<...>
container/warehouse/production-database/inventory/2021/01/31/data.parquet
container/warehouse/production-database/inventory/2021/02/01/data.parquet
container/warehouse/production-database/inventory/2021/02/02/data.parquet
<...>
container/warehouse/production-database/inventory/2021/02/28/data.parquet
<...>
container/warehouse/production-database/inventory/2021/12/31/data.parquet
container/warehouse/production-database/inventory/2022/01/01/data.parquet
container/warehouse/production-database/inventory/2022/01/02/data.parquet
<...>
container/warehouse/production-database/inventory/2022/01/31/data.parquet
container/warehouse/production-database/inventory/2022/02/01/data.parquet
container/warehouse/production-database/inventory/2022/02/02/data.parquet
<...>
container/warehouse/production-database/order/2022/02/28/data.parquet
<...>
container/warehouse/production-database/order/2022/12/31/data.parquet
container/warehouse/production-database/order/2021/01/01/data.parquet
container/warehouse/production-database/order/2021/01/02/data.parquet
<...>
container/warehouse/production-database/order/2021/01/31/data.parquet
container/warehouse/production-database/order/2021/02/01/data.parquet
container/warehouse/production-database/order/2021/02/02/data.parquet
<...>
container/warehouse/production-database/order/2021/02/28/data.parquet
<...>
container/warehouse/production-database/order/2021/12/31/data.parquet
container/warehouse/production-database/order/2022/01/01/data.parquet
container/warehouse/production-database/order/2022/01/02/data.parquet
<...>
container/warehouse/production-database/order/2022/01/31/data.parquet
container/warehouse/production-database/order/2022/02/01/data.parquet
container/warehouse/production-database/order/2022/02/02/data.parquet
<...>
container/warehouse/production-database/order/2022/02/28/data.parquet
<...>
container/warehouse/production-database/order/2022/12/31/data.parquet
The text string that needs to be provided as input in the Schema Path Pattern field can be:
production-database/([a-z0-9A-Z]*)
Detected Logical Schemas¶
-
container/warehouse/production-database/inventory—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/inventoryfolder by reading the columns for file container/warehouse/production-database/inventory/2021/01/01/data.parquet.-
container/warehouse/production-database/order—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/orderfolder by reading the columns for filecontainer/warehouse/production-database/order/2022/02/28/data.parquet.
Scenario 6¶
Use this when you have multiple logical schemas with multi-file dataset, each unique directory under a specific directory to be identified as logical schema.
container/folder/engineering/data/emp1_data/2022/01/1.parquet
container/folder/engineering/data/emp1_data/2022/02/1.parquet
container/folder/engineering/data/emp1_data/2022/03/1.parquet
container/folder/engineering/data/emp1_data/2022/04/1.parquet
container/folder/engineering/data/emp2_data/2022/01/1.parquet
container/folder/engineering/data/emp2_data/2022/02/1.parquet
container/folder/engineering/data/emp2_data/2022/03/1.parquet
container/folder/engineering/data/emp2_data/2022/04/1.parquet
The text string that needs to be provided as input in the Schema Path Pattern field can be:
engineering/data/([a-z_0-9]*)
Detected Logical Schemas¶
-
container/folder/engineering/data/emp1_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/folder/engineering/data/emp1_datafolder by reading the columns for filecontainer/folder/engineering/data/emp1_data/2022/01/1.parquet.-
container/folder/engineering/data/emp2_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/folder/engineering/data/emp2_datafolder by reading the columns for filecontainer/folder/engineering/data/emp2_data/2022/01/1.parquet.
Scenario 7¶
Use this when you have multiple logical schemas with multi-file dataset, complex path pattern.
container/warehouse/production-database/sales_data/sales_data_1.parquet
container/warehouse/production-database/sales_data/sales_data_2.parquet
<...>
container/warehouse/production-database/sales_data/sales_data_n.parquet
container/warehouse/production-database/product_data/product_data_1.parquet
container/warehouse/production-database/product_data/product_data_2.parquet
<...>
container/warehouse/production-database/product_data/product_data_n.parquet
container/warehouse/dev-database/sales_data/sales_data_1.parquet
container/warehouse/dev-database/sales_data/sales_data_2.parquet
<...>
container/warehouse/dev-database/sales_data/sales_data_n.parquet
container/warehouse/dev-database/product_data/product_data_1.parquet
container/warehouse/dev-database/product_data/product_data_2.parquet
<...>
container/warehouse/dev-database/product_data/product_data_n.parquet
The text string that needs to be provided as input in the Schema Path Pattern field can be:
(production|dev)-database/.*
production-database/(sales_data|product_data)|(dev-database/(sales|product)_data)
Detected Logical Schemas¶
-
container/warehouse/production-database/sales_data-container/warehouse/production-database/product_data-container/warehouse/dev-database/sales_data-container/warehouse/dev-database/product_data
Scenario 8¶
Use this when you have multiple logical schemas with multi-file dataset with hive style column partitioning.
container/warehouse/production-database/sales_data/city=IN/state=GJ/sales_data_1.parquet
container/warehouse/production-database/sales_data/city=IN/state=GJ/sales_data_2.parquet
container/warehouse/production-database/sales_data/city=IN/state=MH/sales_data_1.parquet
container/warehouse/production-database/sales_data/city=IN/state=MH/sales_data_2.parquet
<...>
container/warehouse/production-database/sales_data/city=XX/state=XX/sales_data_n.parquet
container/warehouse/production-database/product_data/year=2022/month=01/product_data_1.parquet
container/warehouse/production-database/product_data/year=2022/month=01/product_data_2.parquet
container/warehouse/production-database/product_data/year=2022/month=02/product_data_1.parquet
container/warehouse/production-database/product_data/year=2022/month=02/product_data_2.parquet
<...>
container/warehouse/production-database/product_data/year=XXX/month=XXX/product_data_n.parquet
The text string that needs to be provided as input in the Schema Path Pattern field can be:
production-database/(sales|product)_data
production-database/(.*)_data
production-database/[^=]*
Detected Logical Schemas¶
-
container/warehouse/production-database/sales_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/sales_datafolder by reading the columns for filecontainer/warehouse/production-database/sales_data/city=IN/state=GJ/sales_data1.parquet. Additionally, column partitionscityandstatewill also be cataloged as columns.-
container/warehouse/production-database/product_data—Columns for this logical schema will be cataloged on the catalog page forcontainer/warehouse/production-database/product_datafolder by reading the columns for filecontainer/warehouse/production-database/product_data/year=2022/month=01/product_data_1.parquet. Additionally, column partitionsyearandmonthwill also be cataloged as columns.
Scenario 9¶
container/warehouse/production-database/inventory/spend/xyz/2021/01/01/data.parquet
container/warehouse/production-database/inventory/def/2021/01/01/data.parquet
container/warehouse/production-database/inventory1/2021/01/01/data.parquet
Expectation here is to discover spend, def and inventory1 as logical schemas; however, that is currently not supported. Within the discovered resource set, the first file (as per the order in the inventory report) with a supported file format is read for columns.
Example 1:
container/warehouse/production-database/sales_data/part1.parquet
container/warehouse/production-database/sales_data/part2.parquet
container/warehouse/production-database/sales_data/part3.parquet
part1.parquet will be read for columns.
Example 2:
container/warehouse/production-database/sales_data/part1.csv
container/warehouse/production-database/sales_data/part1.parquet
container/warehouse/production-database/sales_data/part2.csv
container/warehouse/production-database/sales_data/part1.parquet
container/warehouse/production-database/sales_data/part3.csv
container/warehouse/production-database/sales_data/part1.parquet
part1.csv will be read for columns.
Example 3:
container/warehouse/production-database/sales_data/part1.csv
container/warehouse/production-database/sales_data/part1.psv
container/warehouse/production-database/sales_data/part1.tsv
container/warehouse/production-database/sales_data/part3.parquet
part1.csv will be read for columns.
Validation¶
To do an offline validation of the pattern:
Prepare a set of sample file paths representative of real data:
container/folder/engineering/data/emp1_data/2022/01/1.parquet container/folder/engineering/data/emp1_data/2022/02/1.parquet container/folder/engineering/data/emp1_data/2022/03/1.parquet container/folder/engineering/data/emp1_data/2022/04/1.parquet container/folder/engineering/data/emp2_data/2022/01/1.parquet container/folder/engineering/data/emp2_data/2022/02/1.parquet container/folder/engineering/data/emp2_data/2022/03/1.parquet container/folder/engineering/data/emp2_data/2022/04/1.parquet
Replace the placeholder of Schema Path Pattern string(
<PATTERN>) in this regular expression:(.*(<PATTERN>))/((.*).((?i)\bcsv\b|(?i)\btsv\b|(?i)\bpsv\b|(?i)\bparquet\b))Example:
(.*(engineering/data/([a-z_0-9]*)))/((.*).((?i)\bcsv\b|(?i)\btsv\b|(?i)\bpsv\b|(?i)\bparquet\b))Use the sample file paths from point 1 and regular expression from point 2 on a website like regex101, selecting Java 8 as the FLAVOR. Group 1s will be discovered as logical schemas. For above data, below logical schemas will be discovered:
/engineering/data/emp1_data /engineering/data/emp2_data
Troubleshooting¶
Issue |
Cause |
Resolution |
|---|---|---|
No logical schemas discovered |
The pattern doesn’t match the directory depth. |
Adjust regex to include full path
Example: add |
Invalid pattern syntax |
Missing escape characters ( |
Test your regex on regex101.com using
the Java version 8. Example: add |
Unexpected number of schemas discovered |
Pattern too broad (matches multiple folders). |
Narrow the expression, e.g., replace
|